Abstract

Objective:Exposure to low levels of lead acetate can induce hypertension in both humans and experimental animals. The exact mechanisms of lead-induced hypertension are not well understood, but its pathogenesis could be explained by the changes in heart rate and contractility.Materials and Methods:In the present study, the effects of exposure to 100 ppm of lead in drinking water (for periods of 4, 8, and 12 weeks) on blood pressure and some physiologic parameters (eg, electrocardiography [ECG], heart rate [HR], cardiac contractility, and coronary flow) of isolated beating rat heart was investigated using the Langendorff isolated heart apparatus. The isolated hearts were perfused with Krebs-Henseleit solution (37°C; pH 7.4; gassed with 95% O2 + 5% CO2). All data were digitized by a software program for further analysis.Results:The blood pressure in the 8- and 12-week lead-exposed groups was significantly increased as compared to the control group. The ECG showed arrhythmias and conduction abnormalities only in the late phases of exposure (12 weeks). The HR and contractility were significantly higher in the 8- and 12-week lead-treated rats but not in the 4-week group. No significant changes were observed in coronary flow.Conclusion:These results indicate that: 1) low levels of lead exposure do not significantly affect the ECG in the early phase, 2) low levels of lead exposure causes ECG changes in the late phases of exposure, and 3) this level of lead exposure can increase HR and cardiac contractility but has no effect on coronary flow.

Highlights

  • MethodsThe effects of exposure to 100 ppm of lead in drinking water (for periods of 4, 8, and 12 weeks) on blood pressure and some physiologic parameters (eg, electrocardiography [ECG], heart rate [HR], cardiac contractility, and coronary flow) of isolated beating rat heart was investigated using the Langendorff isolated heart apparatus

  • The blood pressure in the 8- and 12-week lead-exposed groups was significantly increased as compared to the control group

  • Other reported cardiovascular changes following lead exposure include alteration in ECG, impaired cardiac conduction, increased incidence of arrhythmias as well as increased susceptibility to catecholamine-induced arrhythmias, and alteration in the force of cardiac contraction. All these changes are brought about by chronic exposure to relatively high levels of lead,[10,11] These findings were mainly derived from in vivo studies done on humans; in vitro experimental studies were few

Read more

Summary

Methods

The effects of exposure to 100 ppm of lead in drinking water (for periods of 4, 8, and 12 weeks) on blood pressure and some physiologic parameters (eg, electrocardiography [ECG], heart rate [HR], cardiac contractility, and coronary flow) of isolated beating rat heart was investigated using the Langendorff isolated heart apparatus. Badalzadeh et al.: Lead exposure on blood pressure food and water and were housed at a temperature of 23 ± 2°C with a 12-h light/dark cycle. The animals were randomly divided into control and three lead-treated (4-, 8-, and 12-weeks) groups. The three lead-treated groups were given drinking water containing 100 ppm (0.01%) of lead acetate for periods of 4, 8, and 12 weeks; control rats were given drinking water without any lead acetate.

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.