Abstract

This study evaluated the effect of low-level laser therapy (LLLT) on the chemical composition, crystallinity and crystalline structure of bone at the site of distraction osteogenesis. Five rabbits were subjected to distraction osteogenesis (latency = 3 days; rate and frequency = 0.7 mm/day for 7 days; consolidation = 10 days), and three were given LLLT with arsenide-gallium-aluminum (AsGaAl; 830 nm, 40 mW): 10 J/cm(2) dose per spot, applied directly to the distraction osteogenesis site during the consolidation stage at 48 h intervals. Samples were harvested at the end of the consolidation stage. X-ray fluorescence and X-ray diffraction were used to analyze chemical composition, crystallinity and crystalline structure of bone at the distraction osteogenesis site. The analysis of chemical composition and calcium (Ca) and phosphorus (P) ratios revealed greater mineralization in the LLLT group. Diffractograms showed that the crystalline structure of the samples was similar to that of hydroxyapatites. Crystallinity percentages were greater in rabbits that were given LLLT. Crystallinity (41.14% to 54.57%) and the chemical composition of the bone at the distraction osteogenesis site were similar to the that of the control group (42.37% to 49.29%). The results showed that LLLT had a positive effect on the biomodulation of newly formed bone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.