Abstract

BackgroundPharmacological thrombolysis with streptokinase, urokinase or tissue activator of plasminogen (t-PA), and mechanical interventions are frequently used in the treatment of both arterial and venous thrombotic diseases. It has been previously reported that application of ultrasound as an adjunct to thrombolytic therapy offers unique potential to improve effectiveness. However, little is known about effects of the ultrasound on proteins of blood coagulation and fibrinolysis. Here, we investigated the effects of the ultrasound on fibrinogen on processes of coagulation and fibrinogenolysis in an in vitro system.ResultsOur study demonstrated that low frequency high intensity pulse ultrasound (25.1 kHz, 48.4 W/cm2, duty 50%) induced denaturation of plasminogen and t-PA and fibrinogen aggregates formation in vitro. The aggregates were characterized by the loss of clotting ability and a greater rate of plasminolysis than native fibrinogen. We investigated the effect of the ultrasound on individual proteins. In case of plasminogen and t-PA, ultrasound led to a decrease of the fibrinogenolysis rate, while it increased the fibrinogenolysis rate in case of fibrinogen. It has been shown that upon ultrasound treatment of mixture fibrinogen or fibrin with plasminogen, t-PA, or both, the rate of proteolytic digestion of fibrin(ogen) increases too. It has been shown that summary effect on the fibrin(ogen) proteolytic degradation under the conditions for combined ultrasound treatment is determined exclusively by effect on fibrin(ogen).ConclusionsThe data presented here suggest that among proteins of fibrinolytic systems, the fibrinogen is one of the most sensitive proteins to the action of ultrasound. It has been shown in vitro that ultrasound induced fibrinogen aggregates formation, characterized by the loss of clotting ability and a greater rate of plasminolysis than native fibrinogen in different model systems and under different mode of ultrasound treatment. Under ultrasound treatment of plasminogen and/or t-PA in the presence of fibrin(ogen) the stabilizing effect fibrin(ogen) on given proteins was shown. On the other hand, an increase in the rate of fibrin(ogen) lysis was observed due to both the change in the substrate structure and promoting of the protein-protein complexes formation.

Highlights

  • Pharmacological thrombolysis with streptokinase, urokinase or tissue activator of plasminogen (t-PA), and mechanical interventions are frequently used in the treatment of both arterial and venous thrombotic diseases

  • Plasminogen was purified by affinity chromatography on lysine-Sepharose from fresh frozen citrated bovine plasma according to Deutsch et al [30]

  • The same samples separated on the sodium dodecyl sulfate (SDS)-PAGE gel containing b-mercaptoethanol showed three identical polypeptides corresponding to native Aa, Bb, and gchains of fibrinogen (Figure 1)

Read more

Summary

Introduction

Pharmacological thrombolysis with streptokinase, urokinase or tissue activator of plasminogen (t-PA), and mechanical interventions are frequently used in the treatment of both arterial and venous thrombotic diseases. It has been previously reported that application of ultrasound as an adjunct to thrombolytic therapy offers unique potential to improve effectiveness. Little is known about effects of the ultrasound on proteins of blood coagulation and fibrinolysis. We investigated the effects of the ultrasound on fibrinogen on processes of coagulation and fibrinogenolysis in an in vitro system. Pharmacological thrombolysis using streptokinase, urokinase or tissue activator of plasminogen (t-PA) and mechanical interventions are frequently employed to treat both arterial and venous thrombotic diseases. Reperfusion is not always achieved and the success of the therapy is limited by reocclusion [1]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.