Abstract

Ultrasound can be used to induce cell resonance and cavitation to inhibit cyanobacterial growth, but it can also lead to increase in dissolved nutrients because of cell disruption. This study investigated the process from cell inactivation to disruption of Microcystis aeruginosa. Algal cells were sonicated (at 35kHz) under various intensities and durations. Results showed that chlorophyll a content and Fv/Fm values decreased slightly within the first 5min. Superoxide dismutase activity was stimulated and its peak value appeared at the fifth minute. After 20min, considerable number of ruptured cells were observed and the concentrations of dissolved nitrogen and phosphorus increased rapidly. Finally, ammonia and nitrate merely composed a small portion of dissolved nitrogen. This study demonstrated that excessive ultrasound treatment can significantly rupture algal cells and lead to the release of cellular inclusions, which may cause ecological issues or public health problems. Based on our findings, ultrasonic intensity controlled at 0.035W/mL and applied for a duration of 20min delivers the optimal result in effectively inhibiting physiological activities of Microcystis aeruginosa without marked cell disruption. This will ultimately help to achieve algal control, while conserving energy and preserving the environment and human health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.