Abstract

Aspirin is a unique nonsteroidal anti-inflammatory drug; at high doses (aspirin(high), 1g), it is anti-inflammatory stemming from the inhibition of cyclooxygenase and proinflammatory signaling pathways including NF-kappaB, but is cardioprotective at lower doses (aspirin(low), 75 mg). The latter arises from the inhibition of thromboxane (Tx) B(2), a prothrombotic eicosanoid also implicated in polymorphonuclear leukocyte trafficking. As a result, aspirin(low) is widely used as a primary and secondary preventative against vascular disease. Despite this and its ability to synthesize proresolution 15-epi-lipoxin A(4) it is not known whether aspirin(low) is anti-inflammatory in humans. To address this, we generated skin blisters by topically applying cantharidin on the forearm of healthy male volunteers, causing an acute inflammatory response including dermal edema formation and leukocyte trafficking. Although not affecting blister fluid volume, aspirin(low) (75 mg, oral, once daily/10 days) reduced polymorphonuclear leukocyte and macrophage accumulation independent of NF-kappaB-regulated gene expression and inhibition of conventional prostanoids. However, aspirin(low) triggered 15-epi-lipoxin A(4) synthesis and up-regulated its receptor (FPRL1, ALX). From complimentary in vitro experiments, we propose that 15-epi-lipoxin A(4) exerts its protective effects by triggering antiadhesive NO, thereby dampening leukocyte/endothelial cell interaction and subsequent extravascular leukocyte migration. Since similar findings were obtained from murine zymosan-induced peritonitis, we suggest that aspirin(low) possesses the ability to inhibit mammalian innate immune-mediated responses. This highlights 15-epi-lipoxin A(4) as a novel anti-inflammatory working through a defined receptor and suggests that mimicking its mode of action represents a new approach to treating inflammation-driven diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.