Abstract

In a region where water is the primary limiting factor of crop production, loss of water from fields by overland flow represents an economic loss to producers. Traditional crop management practices in north-central Oregon have led to crop water loss by overland flow. In 1931, a long-term experiment was begun near Pendleton, Oregon, in a Walla Walla silt loam (coarse-silty, mixed, mesic Typic Haploxeroll—US; Kastanozems—FAO), to examine the influence on soil fertility and crop production by nutrient amendments and crop residue management practices. This experiment provided the opportunity to evaluate the influence of a several traditional farming practices on field hydrology. Tillage in all treatments consisted of moldboard plowing and multiple passes with secondary tillage equipment to smooth the surface for planting and for weed control. The treatments were combinations of nutrient amendments (0.90 kg N ha −1 commercial fertilizer, and 145 kg N ha −1 from manure) and residue management (fall-burn, spring-burn, and no-burn), whose soil organic carbon increased with increasing nutrient amendments. These treatments were in a winter wheat–fallow system and represent a set of past and current cultural practices. Overland flow from these treatments was measured. Lister furrows separated the plots of 12 m×40 m (≈0.05 ha) to prevent overland flow from treatment to treatment and were instrumented with weirs to capture and measure overland flow. To determine if hydrologic differences existed between treatments, we tested the overland flow to precipitation ( Q/ P) ratio. The Q/ P ratio ( P<0.15) was greatest within crop year/low soil fertility (0 kg N ha −1, burn) whereas the high fertility (145 kg N ha −1, no-burn) treatment crop year plots Q/ P ratios were similar to fallow, standing stubble plots. Most notably, the manure amendment plots in crop, produce significantly less overland flow than the other residue and nutrient management practices, and marginally less overland flow than treatments in stubble. This research demonstrates that overland flow was greater from low fertility and stubble burned treatments. Increased overland flow increases the risk of soil erosion and loss of water to overland flow is potentially a loss of needed soil water for crop growth and production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.