Abstract

In order to understand the composition and stability of soil aggregate in paddy filed, as well as the changes of soil aggregate-associated nitrogen (N), phosphorus (P) and potassium (K) after straw addition combined with chemical fertilization, soil samples were collected from a 34-year positioning experiment with three treatments, including no chemical fertilizer (CK), chemical fertilizer only (NPK), and straw addition plus chemical fertilizer (NPKS). The composition of water-stable aggregates at the soil layers of 0-20 cm and 20-40 cm were analyzed with the wet sieving method, as well as the distribution characteristics, contribution rate and activation rate of soil aggregate-associated N, P, and K. Results showed that the fractions of >2 mm and 0.25-1 mm aggregates dominated the soil water-stable aggregates in paddy field, while the contribution of <0.053 mm aggregates was lowest. Compared with CK, NPKS treatment increased the contents of >2 mm and 1-2 mm aggregates at the layers of 0-20 and 20-40 cm, and reduced the contents of 0.053-0.25 mm and <0.053 mm. Similar result in NPK treatment was observed at the layer of 0-20 cm. Compared with tat under the NPK treatment, mean weight diameter (MWD) and geometric mean diameter (GMD) increased by 3.9%-15.5% and 6.3%-41.7% in NPKS treatment, respectively. However, the unstable aggregate index (ELT) reduced by 5.7%-28.7% in the NPKS treatment. NPKS significantly increased the contents of total N (TN), available P (AP), and available K (AK) in soil aggregates, especially in the >0.25 mm aggregates. There were no significant diffe-rences about alkali-hydrolysable N (AN) and total K (TK) between NPK and NPKS treatments. The nutrient contribution of soil aggregates in paddy field was affected by aggregate composition. NPKS significantly increased the contribution of AN, AP, and AK within >1 mm aggregates. In all, straw addition combined with chemical fertilizer could increase the stability of soil aggregates at the layers of 0-20 cm and 20-40 cm, and increase the contents of soil aggregate-associated N, P and K, especially for the >1 mm aggregates. Our results provided insights into ensuring soil quality and sustainable development of resources in paddy field by adjusting the ratio of soil C to N.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call