Abstract

The effects of longitudinal and latitudinal polysilicon grain boundaries on the performance metal oxide semiconductor field effect transistors (MOSFETs) fabricated on large-grain polysilicon-on-insulator (LPSOI) have been investigated. Unlike conventional thin-film-transistors (TFTs) with random grain distribution, MOSFETs fabricated on the LPSOI film contains the combination of only longitudinal or latitudinal grain boundaries. Longitudinal GBs parallel to the direction of current flow has smaller impact to the current flow, but provided extra leakage current that caused early device shortage, especially in wide devices. The latitudinal GBs perpendicular to the direction of current flow offered higher resistance to the inversion carriers thus causing lower current drive, higher threshold voltage, and gentler subthreshold slope. The result of the study can be used to optimize device design for high performance on MOSFETs on the LPSOI substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.