Abstract

BackgroundNatural abundance of carbon (C) and nitrogen (N) stable isotope ratios (δ13C and δ15N) has been used to indicate the state and cycle of ecosystem C and N. However, it is still unclear how C and N cycle of boreal forests respond to the N deposition.ResultsWe conducted an 8-year continuous N addition field experiment in a Larix gmelinii forest in Greater Khingan Mountains, Northeast China. Four N treatments (0, 25, 50, 75 kg N ha−1 year−1) were built. The effects of N addition on the δ13C and δ15N of needle, branch, bark, and fine root of Larix gmelinii and soil were studied. The result of the balance between the N input and output flux showed that N addition significantly increased the δ15N in each organ of Larix gmelinii, but did not change the δ15N of soil. We also found that the N absorption by needles of Larix gmelinii could increase the needle photosynthesis rate and δ13C by increasing carboxylation, but N addition had no significant effect on the δ13C of soil and other organs. In addition, both the soil δ15N and δ13C increased with the soil depth.ConclusionsLong-term N addition may lead to more open C and N cycles and further affect plant nutrient acquisition strategies in boreal forest ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call