Abstract

This study evaluates the long-term individual and combined effects of high temperature (HT) and water deficit (WD) stress on plant growth, leaf gas-exchange and water use efficiency in cultivars of the three most important crops worldwide, rice, wheat and maize. Total plant biomass (Bt ) accumulation decreased under all treatments, being the combined HT-WD treatment the most detrimental in all three species. Although decreases in Bt correlated with adjustments in biomass allocation patterns (i.e. the leaf area ratio), most of the variation observed in Bt was explained by changes in leaf gas exchange parameters. Thus, integrated values of leaf carbon balance obtained from daily course measurements of photosynthesis and respiration were better predictors of plant growth than the instantaneous measurements of leaf gas exchange. Leaf water use efficiency, assessed both by gas exchange and carbon isotope measurements, was negatively correlated with Bt under WD, but not under the combined WD and HT treatment. A comparative analysis of the negative effects of single and combined stresses on the main parameters showed an additive component for WD and HT in rice and maize, in contrast to wheat. Overall, the results of the specific cultivars included in the study suggest that the species native climate plays a role shaping the species acclimation potential to the applied stresses. In this regard, wheat, originated in a cold climate, was the most affected species, which foretells a higher affectation of this crop due to climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call