Abstract

Altered soil nutrient cycling under future climate scenarios may affect pasture production and fertilizer management. We conducted a controlled-environment study to test the hypothesis that long-term exposure of pasture to enriched carbon dioxide (CO2) would lower soil nutrient availability. Perennial ryegrass was grown for 9 weeks under ambient and enriched (ambient + 120 ppm) CO2 concentrations in soil collected from an 11.5-year free air CO2 enrichment experiment in a grazed pasture in New Zealand. Nitrogen (N) and phosphorus (P) fertilizers were applied in a full factorial design at rates of 0, 12.5, 25 or 50 kg N ha−1 and 0, 17.5 or 35 kg P ha−1. Compared to ambient CO2, under enriched CO2 without P fertilizer, total plant biomass did not respond to N fertilizer, and tissue N/P ratio was increased indicating that P was co-limiting. This limitation was alleviated with the lowest rate of P fertilizer (17.5 kg P ha−1). Plant biomass in both CO2 treatments increased with increasing N fertilizer when sufficient P was available. Greater inputs of P fertilizer may be required to prevent yield suppression under enriched CO2 and to stimulate any response to N.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.