Abstract

Changes in gross canopy photo synthetic rate (PGc), produced by long-term exposure to an elevated atmospheric CO2 level (626 ± 50/μmol mol−1), were modelled for Lolium perenne L. cv. Vigor and Trifolium repens L. cv. Blanca, using a simple photosynthesis model, based on biochemical and physiological information (leaf gross CO2 uptake in saturating light, Pmax, and leaf quantum efficiency, α) and structural vegetation parameters (leaf area index, LAI, canopy extinction coefficient, k, leaf transmission, M). Correction of PGc for leaf respiration allowed comparison with previously measured canopy net CO2 exchange rates, with the average divergence from model prediction amounting to about 6%. Sensitivity analysis showed that for a three-week old canopy, the PGc increase in high CO2 could be attributed largely to changes in Pmax and α, while differences in canopy architecture were no longer important for the PGc-stimulation (which they were in the early growth stages). As a consequence of this increasing LAI withcanopy age, the gain of daytime CO2 uptake is progressively eroded by the increasing burden of canopy respiration in high-CO2 grown Lolium perenne. Modelling canopy photosynthesis in different regrowth stages after cutting (one week, two weeks,...), revealed that the difference in a 24-h CO2 balance between the ambient and the high CO2 treatment is reduced with regrowth time and completely disappears after 6 weeks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.