Abstract

The nucleus accumbens (NAc) is known widely for its role in the reward circuit, which is dysregulated in a number of psychological disorders. Recent evidence also suggests the contribution of this structure in spatial and gustatory memories. Because of its role in different types of memories, similar to the hippocampus, we assumed the formation of spine clusters, which are engrams of memory, to be present on dendrites of medium spiny neurons (MSNs). We found that the activation of clustered inputs resulted in sublinear summation when clusters were present on the same branch and also when inputs were distributed on different branches. The size, as well as the location of clusters, was found to affect the summation. With an increase in cluster size and distance from soma, the summation was increasingly sublinear. When the temporal integration window was measured for clustered spines, it was found to be narrower as compared to that for a single spine. Also, distally located clusters resulted in a wider temporal window, as compared to proximal clusters. Our results suggest that depending on the location of clusters, the modes of integration will differ in MSNs possessing clustered spines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call