Abstract

A Eulerian stochastic method is applied to develop a theory of concentration variance for solute transport in a heterogeneous medium. The study focuses on the effects of kinetic sorption and local dispersion on solute dissipation. Spatial distribution of the concentration variance is obtained by scaling the zero local dispersion form of σc 2. The scaling function resulting from the local dispersion and kinetic sorption is derived in a closed integral form. It satisfies the measurement of total concentration variance resulting from the Eulerian mass balance using spatially integrated concentration moments. The spatially integrated moments bypass the need for classical closures applied to joint moments between concentration and velocity fields. The study results indicate that kinetic sorption reduces the total development of concentration variance in comparison with non-reactive solute transport. Kinetic sorption acts as a reduction mechanism, but not as a dissipating mechanism like the local dispersion. Kinetic sorption and local dispersion are not additive processes and their effects on the concentration variance depend on the stage of transport time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.