Abstract

Nanoindentation tests with loading rates spanning three orders of magnitude were carried out on annealed polycrystalline copper. In addition to the hardness increasing with loading rate, the formation and development of pile-up around the indentation sites were also found to be strongly rate-dependent. The development of pile-up with increased time at peak load was found to be sensitive to the prior loading rate, being much larger for tests at 50mN/s than at 0.05mN/s. The underlying mechanisms were investigated in terms of the kinetic aspects of the nucleation and interactions of dislocations, and can be well explained by the activation volume and the strain gradient plasticity theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.