Abstract
Seat interface forces, particularly shear forces, play an essential role in predicting the risk of pressure ulcers and seating discomfort. When a finite element human body model (HBM) is used for static seating simulation, the most common loading method is to put the model in a position close to the desired final posture and then ‘drop’ it from just above the seat by applying the gravity (DROP). This does not represent how people sit in a seat. In addition, high coefficients of friction (COF) are often used to prevent sliding, which may lead to unrealistically high tangential forces. This study aims to investigate the effects of the loading process and the COF on seating simulations with a HBM. We propose a new loading approach called ‘drop and rotate’ (D&R) to better mimic people sitting on a seat. With the trunk more flexed than the desired posture, the model is dropped to establish the contact between the buttocks and thighs, and the seat pan first, and then between the back and the backrest by rotating the hip. Simulations were performed using a recently developed and validated adult male model in two different seat configurations. Results show that the proposed D&R method was less sensitive to COF and gave a better prediction of contact forces, especially on the seat pan. However, its computational time is higher than the DROP method. The study highlights the importance of the loading process when simulating static seating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.