Abstract
ABSTRACT The purpose of this investigation was to examine neuromuscular function, muscle fatigue, rating of perceived exertion (RPE), and muscle swelling between isokinetic and isotonic leg extensions with blood flow restriction (BFR). Fourteen (21 ± 2years; 160cm ± 3.8; 61kg ± 9.1) trained women performed 75 (1 × 30,3 × 15) submaximal (30% of maximal strength), unilateral, isokinetic and isotonic leg extensions with BFR (60% of total arterial occlusion pressure). Before and after exercise, subjects performed maximal voluntary isometric contractions (MVIC) and muscle thickness (MT) was assessed with ultrasound. RPE was recorded across all sets and surface electromyography (EMG) was assessed during the MVIC muscle actions. Separate repeated measures ANOVAs were used to examine MVIC, MT, RPE and neuromuscular function. There were greater reductions in MVIC torque and EMG mean power frequency following isotonic (46.2 ± 17.1%; 16.4 ± 7.9%) than isokinetic (17.9 ± 10.9%;6.5 ± 6.3%). RPE was also higher during isotonic (7.5 ± 2.2), than isokinetic (5.7 ± 1.9). There were no differences in EMG amplitude or MT increases (20 ± 2.1%) between conditions. Isotonic BFR elicited greater fatigue-induced decreases in muscular strength and greater RPE than isokinetic BFR, but similar MT and muscle excitation responses for both conditions. Therefore, both isokinetic and isotonic may induce similar acute physiological responses, but isotonic BFR was associated with greater muscle fatigue and perceived effort. Highlights Exercise modality affects the fatigue and perceptual responses when applying blood flow restriction. Despite greater utility, isotonic blood flow restriction was associated greater fatigue and perceived effort. Isotonic and isokinetic blood flow restriction elicited comparable neural changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.