Abstract

Several studies have evaluated the effects of live yeast supplementation on rumen microbial population; however, its effect on differential microbial genes and their functional potential has not been described. Thus, this study applied shotgun metagenomic sequencing to evaluate the effects of live yeast supplementation on genetic and functional potential of the rumen microbiota in beef cattle. Eight rumen-cannulated Holstein steers were randomly assigned to two treatments in a cross-over design with two 25-day experimental periods and a 10-day wash-out between the two periods. The steers were housed in individual pens and fed 50% concentrate-mix and 50% red clover/orchard hay ad libitum. Treatments were (1) control (CON; basal diet without additive) and (2) yeast (YEA; basal diet plus 15 g/d of live yeast product). Rumen fluid samples were collected at 3, 6, and 9 h after feeding on the last d of each period. Sequencing was done on an Illumina HiSeq 2500 platform. Dietary yeast supplementation increased the relative abundance of carbohydrate-fermenting bacteria (such as Ruminococcus albus, R. champanellensis, R. bromii, and R. obeum) and lactate-utilizing bacteria (such as Megasphaera elsdenii, Desulfovibrio desulfuricans, and D. vulgaris). A total of 154 differentially abundant genes (DEGs) were obtained (false discovery rate < 0.01). Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analysis of the DEGs revealed that 10 pathways, including amino sugar and nucleotide sugar metabolism, oxidative phosphorylation, lipopolysaccharide biosynthesis, pantothenate and coenzyme A biosynthesis, glutathione metabolism, beta-alanine metabolism, polyketide sugar unit biosynthesis, protein export, ribosome, and bacterial secretory system, were enriched in steers fed YEA. Annotation analysis of the DEGs in the carbohydrate-active enzymes (CAZy) database revealed that the abundance of genes coding for enzymes belonging to glycoside hydrolases, glycosyltransferases, and carbohydrate binding modules were enriched in steers fed YEA. These results confirm the effectiveness of a live S. cerevisiae product for improving rumen function in beef steers by increasing the abundance of cellulolytic bacteria, lactic acid-utilizing bacteria, and carbohydrate-active enzymes in the rumen.

Highlights

  • Live yeast products containing Saccharomyces cerevisiae are feed additives used to alter rumen fermentation for improved performance, health, and feed efficiency of ruminants [1]

  • Our results revealed that some bacterial genera that responded to treatment with a live S. cerevisiae-based additive showed positive correlations with metabolites involved in amino acid metabolism and biosynthesis as well as metabolism of energy substrates

  • The product used in this study is a thermal-stable live S. cerevisiae (5.7 × 106 colony forming units/g) with high levels of mannan oligosaccharides and beta-glucans, which were sourced from human-grade food plant (PMI, Arden Hills, MN, USA)

Read more

Summary

Introduction

Live yeast products containing Saccharomyces cerevisiae are feed additives used to alter rumen fermentation for improved performance, health, and feed efficiency of ruminants [1]. Several 16S ribosomal ribonucleic acid (rRNA) gene-based sequencing studies have advanced our knowledge of ruminal bacterial diversity and have reported the effects of S. cerevisiae products in the rumen [4]. 16S rRNA gene sequencing reveals the bacterial diversity without any insight into the functional potential of microbial communities [5]. This study applied a shotgun metagenomic sequencing approach to offer taxonomic classification of sequences at the species level and reveal, for the first time, the effects of live yeast supplementation on differentially abundant genes and their functional potential

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call