Abstract

The observed quasi‐rigid behaviour of surface plates in the course of their relative motion is a consequence of the high viscosity which obtains in the cold near surface region. By assigning a particular constant velocity as the upper boundary condition in a numerical model of mantle convection, we have investigated the effect of lithospheric rigidity on the variation of oceanic bathymetry and heat flow as a function of ocean floor age. Predicted variations of both bathymetry and heat flow at the surface of mantle wide convection cells which are partially heated from within, exhibit the same qualitative behaviour as data compiled for the major ocean basins. The bathymetry varies with distance x from the spreading centre initially as x½ but subsequently flattens with respect to an x½ reference curve whereas the heat flow closely follows an x−½ decay over most of the convection cell. Consequently the viability of the mechanism for sea floor flattening proposed by Jarvis and Peltier (1980) is increased when a constant surface velocity, characteristic of rigid plates, is incorporated in the model. This model successfully predicts both that the bathymetry should flatten and that the heat flow should not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.