Abstract

In this study, the effect of lithium slag (LS) on the frost resistance of cement-soil was evaluated. The results of freeze–thaw damage on the surface of the cement-soil, freeze–thaw mass loss, unconfined compression strength, triaxial shear strength, cohesion, and internal friction angle were tested at various freeze–thaw cycles after 90 days of curing when LS was incorporated into the cement-soil at different proportions (0%, 6%, 12%, and 18%). Combining nuclear magnetic resonance (NMR) T2 distribution and scanning electron microscopy (SEM) microscopic images, the mechanism of the effect of LS on the cement-soil was also analyzed. The experiment confirmed that the surface freeze–thaw damage degree and mass loss value of the cement-soil decreased after incorporating different LS contents, and that the unconfined compression strength, triaxial shear strength, cohesion, and internal friction angle also improved significantly compared with the specimens without LS. In this experiment, the optimization level of the cement-soil performance with different LS content was ranked as 12% > 18% > 6% > 0%. According to the NMR and SEM analysis results, the LS content of 12% can optimize the internal pore structure of the cement-soil and strengthen the bond between aggregate particles, hence inhibiting the extension of freeze-swelling cracks induced by freeze–thaw cycles. In conclusion, LS can effectively enhance the frost resistance of cement-soil, and the optimum content in this experiment is 12%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.