Abstract

We report on the synthesis of ZnO nanocrystallite aggregates in the presence of lithium ions and films consisting of these aggregates for dye-sensitized solar cell applications. A maximum overall conversion efficiency of 6.1% has been achieved with these films. This value is much higher than the 4.0% obtained for the films that are comprised of ZnO aggregates synthesized in the absence of lithium ions. The lithium ions were found to have an influence on the growth and assembly of ZnO nanocrystallites, leading to an increase in the nanocrystallite size and a polydisperse distribution in the size of the aggregates. The increase in the nanocrystallite size is due to a lithium-induced increase in the diffusivity of interstitial zinc atoms, which leads to an improvement in the crystallinity. This, in turn, yields an oxygen-enriched ZnO surface, which acts to suppress the dissolution of zinc atoms at the ZnO surface in the case of an acidic dye. As such, the formation of a Zn2+/dye complex is avoided. This coll...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.