Abstract
The milling of hardened steel generates very high temperature in the cutting zone, and leads to detrimental effects on the cutting force, workpiece surface finish and tool life. Cryogenic machining is an environmental friendly new approach for the desirable control of the cutting temperature in the cutting zone. The present work investigates the effect of cryogenic cooling by liquid nitrogen (LN2) on the cutting temperature, cutting force and workpiece surface roughness on the end milling of AISI D2 steel by CVD TiN coated carbide insert, at a constant cutting speed of 100 m/min and varying feed rate in the range of 0.01-0.02 mm/tooth. The experimental results showed that with LN2 as a coolant the cutting force and workpiece surface roughness were reduced compared to dry and wet machining due to the better lubrication and cooling effect through reduction of cutting zone temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.