Abstract

The pile-soil system interaction computational model in liquefaction-induced lateral spreading ground was established by the finite difference numerical method. Considering an elastic-plastic subgrade reaction method, numerical methods involving finite difference approach of pile in liquefaction-induced lateral spreading ground were derived and implemented into a finite difference program. Based on the monotonic loading tests on saturated sand after liquefaction, the liquefaction lateral deformation of the site where group piles are located was predicted. The effects of lateral ground deformation after liquefaction on a group of pile foundations were studied using the finite difference program mentioned above, and the failure mechanism of group piles in liquefaction-induced lateral spreading ground was obtained. The applicability of the program was preliminarily verified. The results show that the bending moments at the interfaces between liquefied and non-liquefied soil layers are larger than those at the pile’s top when the pile’s top is embedded. The value of the additional static bending moment is larger than the peak dynamic bending moment during the earthquake, so in the pile foundation design, more than the superstructure’s dynamics should be considered and the effect of lateral ground deformation on pile foundations cannot be neglected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call