Abstract

Abstract Unidirectional and bidirectional links may coexist in many realistic networked complex systems such as the city transportation networks. Even more, for some considerations, several bidirectional links are shifted to unidirectional ones. Many link-orientation strategies might be employed, including High-to-Low, Low-to-High and Random direction-determining methods, abbreviated as HTLDD, LTHDD and RDD respectively. Traffic passing through a unidirectional link is restricted to one-side direction. In real complex systems, nodes are correlated with each other. The failure from an initial node may be propagated iteratively, resulting in a large scale of failures of other nodes, called cascade phenomenon which may damage the safety or security of the networked system. Assuming that traffic load on any failed node can be redistributed to its non-failed neighbors, in this work, we try to reveal the effects of unidirectional links on network robustness against cascades. Extensive simulations have been implemented on kinds of networks including Scale-Free networks, Small-World networks, and Erdos–Renyi random networks. The results showed that all of the above three direction-determining methods decrease the robustness of the original networks against cascading failure. This work can help network designers and managers understand the robustness of network well and efficiently prevent the safety events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.