Abstract
Boron neutron capture therapy (BNCT) remains an important treatment arm for cancer patients with locally invasive malignant tumors. This therapy needs a significant amount of boron to deposit in cancer tissues selectively, sparing other healthy organs. Most of the liposomes contain water-soluble polyhedral boron salts stay in the core of the liposomes and have low encapsulation efficiency. Thus, modifying the polyhedral boron core to make it hydrophobic and incorporating those into the lipid layer could be one of the ways to increase drug loading and encapsulation efficiency. Additionally, a systematic study about the linker-dependent effect on drug encapsulation and drug-release is lacking, particularly for the liposomal formulation of hydrophobic-drugs. To achieve these goals, liposomal formulations of a series of lipid functionalized cobalt bis(dicarbollide) compounds have been prepared, with the linkers of different hydrophobicity. Hydrophobicity of the linkers have been evaluated through logP calculation and its effect on drug encapsulation and release have been investigated. The liposomes have shown high drug loading, excellent encapsulation efficiency, stability, and non-toxic behavior. Release experiment showed minimal release of drug from liposomes in phosphate buffer, ensuring some amount of drug, associated with liposomes, can be available to tumor tissues for Boron Neutron Capture Therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.