Abstract

Several cell surface molecules, including HVEM and nectin-1, can serve as entry receptors for herpes simplex virus (HSV) and as receptors for virus-induced or viral glycoprotein-induced cell fusion. The viral ligand for these receptors is the HSV envelope glycoprotein gD. A set of linker-insertion and deletion mutants of HSV type 1 (HSV-1) gD was analyzed for effects of the mutations on binding of gD to HVEM and nectin-1, on viral glycoprotein-induced cell fusion with target cells expressing HVEM or nectin-1 and on complementation of infectivity of a gD-null HSV-1 viral mutant. Insertions after amino acid 151 or 225 or deletion of amino acids 234–244 disrupted (i) binding of the mutant forms of gD to both receptors and (ii) functional interactions (cell fusion and complementation) with both receptors, but were without effect on cell surface expression. Insertions in the N-terminal domain of gD (after amino acid 12, 34 or 43) disrupted binding to HVEM and functional activities with HVEM, as expected from a previously reported X-ray structure of a gD–HVEM complex, but were without effect in the case of nectin-1. These and other results indicate that the mutations disruptive of interactions with both receptors probably affect conformations of contact sites that are different for each receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.