Abstract

Liming and phosphorus (P) applications are recommended practices for improving crop production in acid soils of the tropics. Although considerable work has been done to establish liming rates for acid soils in many parts of the world, information on the effects of lime on the forms of aluminium which actively sorb P in such soils is minimal. A greenhouse pot experiment was conducted at Waruhiu Farmers Training Centre, Githunguri to evaluate the effect of liming on oxalate and dithionate extractable aluminium in acid soils. Extremely (pH 4.48) and strongly (pH 4.59) acidic soils were evaluated. Four liming (CaO) rates namely 0, 2.2, 5.2 and 7.4 tonnes ha-1 for extremely acidic and 0, 1.4, 3.2, and 4.5 tonnes ha-1 for strongly acidic soils were evaluated. The experiment was laid out in a Randomized Complete Block Design (RCBD) and replicated three times. Data collected included: initial soil chemical properties, oxalate (Alo) and dithionate (Ald) aluminium levels. The tested soils had high exchangeable Al (> 2 cmol Al kg-1), Al saturation of (> 20% Al) and low extractable P values (< 15 mg P kg-1 soil). Liming significantly (p=.05) reduced Alo by 70% and 68% in extremely and strongly acidic soils respectively and Ald by 78% in both extremely and strongly acidic soils compared to control. Use of 7.4 tonnes ha-1 of lime in extremely acidic soils and 4.5 tonnes ha-1 of lime in strongly acidic soils significantly (p=.05) reduced both Alo and Ald by > 68% compared to no lime. It was, therefore, concluded that liming contributes to the reduction of soluble Alo and Ald in acid soils of the Kenya highlands leading to increased soluble P availability. Studies are required to provide short and long term optimal liming rates that reduce Alo and Ald without distabilizing availability of other nutrients in field conditions under wide range of acid soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call