Abstract

SUMMARYThe liming of soils in the lower part of an upland catchment was found to have a major effect on both soil properties and the chemistry of drainage waters. Exchangeable Al was closely correlated with soil pH and showed a very steep rise from 2.6‐4.8 meq 1−1 over the pH range 5.5‐4.5. As streams flowed from unimproved through improved land there was an increase in pH and the concentration of all major anions and basic cations. The greatest increase was in Ca (approximately 3.5‐fold). The concentrations of all dissolved Al species decreased, with inorganic monomeric Al falling to near zero. Leachates were examined from soils representative of the most acidic and the least acidic. Calcium concentrations differed by almost tenfold. Aluminium was present in leachates from the limed soil, but most was unreactive and none was inorganic monomeric. Most of the Al leached from the acid soil was monomeric.A model of soil acidification is proposed in which soil Ca is depleted at a rate of 8% of the exchangeable Ca per annum. The model predicts that liming a soil to neutrality would be likely to influence drainage water chemistry for 30‐40 years and that the most acidic soils of the catchment show no net loss of Ca to drainage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.