Abstract

This study investigated the inhibition of enzymatic hydrolysis by unbound lignin (soluble and insoluble) with or without the addition of metal compounds. Sulfonated, Organosolv, and Kraft lignin were added in aqueous enzyme-cellulose systems at different concentrations before hydrolysis. The measured substrate enzymatic digestibility (SED) of cellulose was decreased by 15% when SL was added to a concentration of 0.1 g/L due to nonproductive adsorption of enzymes onto lignin. Cu(II) and Fe(III) were found to inhibit enzymatic cellulose hydrolysis in the presence of lignin. Ca(II) and Mg(II) were found to reduce or eliminate nonproductive enzyme adsorption by the formation of lignin-metal complex. The addition of Ca(II) or Mg(II) to a concentration of 10 mM can almost completely eliminate the reduction in SED caused by the nonproductive enzyme adsorption onto the lignins studied (SL, OL, or KL at concentration of 0.1 g/L). Ca(II) was also found to reduce the inhibitive effect of bound lignin in pretreated wood substrate, suggesting that Ca(II) can also form complex with bound lignin on pretreated solid lignocelluloses. Significant improvement in SED of about over 27% of a eucalyptus substrate produced by sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) was achieved with the application of Ca(II).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.