Abstract
Lightpipe radiation thermometers (LPRTs) are used as temperature monitoring sensors in most rapid thermal processing (RTP) tools for semiconductor fabrication. These tools are used for dopant anneal, gate oxide formation, and other high temperature processing. In order to assure uniform wafer temperatures during processing these RTP tools generally have highly reflecting chamber walls to promote a uniform heat flux on the wafer. Therefore, only minimal disturbances in the chamber reflectivity are permitted for the sensors, and the small 2 mm diameter sapphire lightpipe is generally the temperature sensor of choice. This study was undertaken to measure and model the effect of LPRT proximity on the wafer temperature. Our experiments were performed in the NIST RTP test bed using a NIST thin‐film thermocouple (TFTC) calibration wafer. We measured the spectral radiance temperature with the center lightpipe and compared these with the TFTC junctions and with the three LPRTs at the mid‐radius of the wafer. We measured LPRT outputs from a position flush with the reflecting plate to within 2 mm of the stationary wafer under steady‐state conditions with wafer‐to‐cold plate separation distances of 6 mm, 10 mm and 12.5 mm. Depressions in the wafer temperature up to 25 °C were observed. A finite‐element radiation model of the wafer‐chamber‐lightpipe was developed to predict the temperature depression as a function of proximity distance and separation distance. The experimental results were compared with those from a model that accounts for lightpipe geometry and radiative properties, wafer emissivity and chamber cold plate reflectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.