Abstract

Light is an important parameter in algal culturing. In this work, the effects of different light qualities on growth of the marine diatom Chaetoceros gracilis are evaluated. The cells were cultured under light quantum flux density of 60 µmol photons/(m2·s) with nine light qualities: LED red light (LR), LED blue light (LB), LED red plus LED blue light (LR+LB), LED white light (LW), fluorescent white light (FW), and combinations of LW and FW lights with increased proportions of red or blue light (FW+LR, FW+LB, LW+LR, and LW+LB). Blue light promoted the growth of C. gracilis largely. Three light qualities, FW+LR, LW+LR, and LR, resulted in the lowest growth rate. Both chlorophyll and carotenoids reached the highest level under LB and the lowest level under LR among monochromatic light sources; however, increasing of the proportion of blue or red light in the white light induced an increase of the chlorophyll and carotenoid concentrations. Light absorption ability of microalgae was critical for the growth of these organisms, as we observed a positive correlation between the extinction coefficient at different wavelengths and the specific growth rate. These findings are of importance to improve the culturing of this alga in bioreactors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call