Abstract

Intrinsically photosensitive retinal ganglion cells (ipRGCs) are able to synthesize the photosensitive protein melanopsin, which is involved in the regulation of circadian rhythms, the papillary light reflex and other nonimaging visual functions. To investigate whether ipRGCs are involved in mediating the light modulation of sleep-wakefulness in rodents, melanopsin knockout mice (MKO), melanopsin-only mice (MO) and coneless, rodless, melanopsin knockout mice (TKO) were used in this study to record electroencephalogram and electromyography variations in the normal 12:12 h light:dark cycle, and 1 h and 3 h light pulses were administered at 1 h after the light was turned off. In the normal 12:12 h light-dark cycle, the WT, MKO and MO mice had a regular day-night rhythm and no significant difference in wakefulness, rapid eye movement (REM) or nonrapid eye movement (NREM) sleep. However, TKO mice could not be entrained according to the light-dark cycle and exhibited a free-running rhythm. Extending the light pulse durations significantly changed the sleep and wakefulness activities of the WT and MO mice but did not have an effect on the MKO mice. These results indicate that melanopsin significantly affects REM and NREM sleep and that ipRGCs play an important role in light-induced sleep in mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.