Abstract

Ulva prolifera is a green alga that plays an important role in green tides. Carotenoid biosynthesis is a basic terpenoid metabolism that is very important for maintaining normal life activities in algae. In this study, we first reported the complete sequences of all genes in the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, which is the only carotenoid synthesis pathway in U. prolifera. Then, we compared these genes with those of other species. Additionally, by detecting the carotenoid contents and expression levels of key genes participating in carotenoid biosynthesis in U. prolifera under three different light (1 000 lx, 5 000 lx and 12 000 lx) and salinity (12, 24 and 40) regimes, we found that carotenoid synthesis could be influenced by light and salinity, such that low light and high salinity could promote the synthesis of carotenoids. The results showed that the expression levels of genes involved in the MEP and the downstream pathway could affect the biosynthesis of carotenoids at the molecular level. This study contributes to a better understanding of the roles of genes participating in carotenoid biosynthesis in U. prolifera and the environmental regulation of these genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call