Abstract

Protists in high-latitude lakes are constrained by cold temperatures, low inorganic nutrient supply and low light availability for much of the year due to ice cover and polar darkness. The lengthening ice-free periods in these freshwater ecosystems due to a warming climate results in increased light availability, but the overall impacts on phytoplankton and other protists are unknown. We experimentally investigated protist community responses to changes in light and prey availability in a dilution series in Ward Hunt Lake (latitude 83°05'N), in the Canadian High Arctic. The communities at the end of the experiment were characterized using high-throughput pyrosequencing of the V4 region of the 18S rRNA gene as a measure of taxonomic presence, and of 18S rRNA (from RNA converted to cDNA) as a taxon-specific indicator of community response. At the end of the experiment under low irradiance, cDNA reads were dominated by photosynthetic dinoflagellate genera, except at the greatest dilution where Cercozoa were most abundant. In contrast, the cDNA reads in the high light treatments were dominated by chrysophytes. Given the known trophic differences among dinoflagellates, cercozoans and chrysophytes, this apparent environmental selection implies that the rise in underwater irradiance associated with increasing ice-free conditions may affect microbial food web structure and function in polar lakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.