Abstract

A full account of theoretical analyses at the DFT level has been reported, focusing on the formation and reactivity of a family of cationic [R-(CH2)n-Py-Sc(CH2SiMe3)]+ catalysts and the effects of counterion and solvation. Two sets of model systems have been considered: (a) structures having identical bridging unit (n = 1) but having varying cyclopentadienyl groups (R = Cp′ (1), R = Ind (2), and R = Flu (3)) and (b) systems with the identical cyclopentadienyl moiety (Flu) but with varying bridging groups (n = 1 (3), n = 0 (4), and n = 2 (5)). For complex 3, various metal ions (Sc, Y, La, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, and Lu) were considered to investigate the effect of central metals on the contact ion pairs (CIP). The formation and separation of CIP were found to be influenced by the steric hindrance of the ligand, the electron-donating ability of the cyclopentadienyl group, and the rare-earth-metal ion radius. The separation enthalpy of the CIPs decreases with increasing dielectronic constant of the s...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.