Abstract

We have reported previously that long-term participation of weight-bearing exercise is associated with increased QCT-derived cortical bone size and strength in middle-aged and older men, but not whole bone cortical volumetric BMD. However, since bone remodeling and the distribution of loading-induced strains within cortical bone are non-uniform, the aim of this study was to examine the effects of lifetime loading history on cortical bone mass distribution and bone shape in healthy community dwelling middle-aged and older men. We used QCT to assess mid-femur and mid-tibia angular bone mass distribution around its center (polar distribution), the bone density distribution through the cortex (radial distribution), and the ratio between the maximum and minimum moments of inertia ( I max/ I min ratio) in 281 men aged 50 to 79 years. Current (> 50 years) and past (13–50 years) sport and leisure time activity was assessed by questionnaire to calculate an osteogenic index (OI) during adolescence and adulthood. All men were then categorized into a high (H) or low/non impact (L) group according to their OI scores in each period. Three contrasting groups were then formed to reflect weight-bearing impact categories during adolescence and then adulthood: H–H, H–L and L–L. For polar bone mass distribution, bone deposition in the anterolateral, medial and posterior cortices were 6–10% greater at the mid-femur and 9–24% greater at mid-tibia in men in the highest compared to lowest tertile of lifetime loading ( p < 0.01– < 0.001). When comparing the influence of contrasting loading history during adolescence and adulthood, there was a graded response between the groups in the distribution of bone mass at the anterior-lateral and posterior regions of the mid-tibia (H–H > H–L > L–L). For radial bone density distribution, there were no statistically significant effects of loading at the mid-femur, but a greater lifetime OI was associated with a non-significant 10–15% greater bone density near the endocortical region of the mid-tibia. In conclusion, a greater lifetime loading history was associated with region-specific adaptations in cortical bone density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call