Abstract

High temperature lead-free Bismuth layer-structured (Li, Ce, Y)-substituted CBN piezoelectric ceramics were prepared by the solid-state reaction method. The phase structure, microstructure, piezoelectric property, dielectric property, thermal stability and electric property of the (Li, Ce, Y)-substituted CBN ceramics were studied. X-ray diffraction and SEM revealed the doped ceramics had typical bismuth layer-structure. The piezoelectric coefficient was improved significantly and the maximum value was ~16.1pC/N.The Curie temperature of all the samples were in the range of 925–941°C that was close to or even excess the value of pure CBN ceramics. The resistivity were studied deeply and all the samples possessed excellent resistivity at high temperature (500°C, ~106Ωcm; 600°C, ~105Ω·cm). The thermal depoling behavior of the ceramics was researched in detail and the doped ceramics exhibited outstanding thermal stability. All the results indicate the (Li, Ce, Y)-substituted CBN ceramics possesses preeminent property, making it promising for application especially in high temperature territories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.