Abstract

The purpose of this experiment was to study the effects of stimulus level on discrimination of frequency as represented in the temporal waveforms of acoustic and electrical signals. The subjects were four nonhuman primates in which one ear had been deafened and implanted with an electrode array and the other ear was untreated. Frequency difference limens for 100 Hz electrical sinusoidal stimulation via a cochlear implant in the deafened ear were compared to those for 100 Hz sinusoidally amplitude-modulated white noise (SAM noise) acoustic stimuli to the normal-hearing contralateral ear. To correct for loudness cues, levels of the test stimuli were varied relative to the reference-stimulus level. The test-stimulus levels at which the percent responses were minimum were determined. These levels were used to measure the frequency difference limens. Frequency difference limens for the electrical stimuli decreased as a function of reference-stimulus level through most of the dynamic range, while those for the acoustic stimuli reached a minimum at 20 dB to 40 dB above threshold. For the electrical stimuli the slopes and relative positions of the frequency difference limen vs. level functions varied from subject to subject and with changes in electrode configuration within a subject. These differences were related to threshold level and dynamic range. At higher levels of stimulation, frequency difference limens for acoustic and electrical stimuli fell in the same range. The slopes and relative positions of the frequency difference limen vs. level functions for electrical stimuli did not parallel those of level difference limen vs. level functions collected simultaneously from the same ears. The data suggest that nonspectral frequency discrimination may depend on the number of nerve fibers stimulated. With prostheses in cochleas with less than a full complement of auditory nerve fibers, the data suggest that stimulation level is an important variable influencing discriminability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call