Abstract

By using semiclassical method and considering Woods–Saxon and Coulomb potentials, the level density parameter a was calculated for three superheavy nuclei 270110, 278112 and 290116. Obtained results showed that the value of level density parameter of these nuclei is near to the simple relation a ≈ A/10. In framework of the dinuclear system model, the effects of level density parameter on the probability of the formation of a compound nucleus, the ratio of neutron emission width and fission width, and evaporation residue cross-section of three cold fusion reactions 62 Ni +208 Pb , 70 Zn +208 Pb and 82 Se +208 Pb , leading to superheavy elements were investigated. The findings indicate that the level density parameter play a significant role in calculations of heavy-ion fusion–fission reactions. The obtained results in the case of a = A/12 have larger values in comparison with calculated level density parameter with Woods–Saxon potential (a WS ) and a = A/10. The theoretical results of the evaporation residue cross-section are very sensitive to the choice of level density parameter. The calculated values with a WS are in good agreement with experimental values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call