Abstract

Objective(s):Behavioral and neuroimaging studies have shown that transcranial direct current stimulation, as a non-invasive neuromodulatory technique, beyond regional effects can modify functionally interconnected remote cortical and subcortical areas. In this study, we hypothesized that the induced changes in cortical excitability following the application of cathodal or anodal tDCS over the left frontal cortex as pre-training would affect functional connectivity in resting-state circuits of fear memory and consequently could improve or disturb the acquisition of fear memory.Materials and Methods:In order to evaluate the polarity-dependent effects of tDCS on the acquisition of fear memory and the functional connectivity, we applied left prefrontal anodal or cathodal stimulation at 200 μA for one session to healthy mice for the durations of 20 and 30 min prior to fear conditioning.Results:Our results revealed that the administration of left prefrontal anodal (for both 20 and 30 min durations) and cathodal (at 30 min duration) tDCS impaired the acquisition of both contextual and cued fear memory. In addition, we did not observe a direct correlation between stimulation duration and the efficacy of tDCS on the acquisition of contextual and cued fear memory.Conclusion:In this study, the impairments of both contextual and cued memory further confirmed the previous studies reporting that the administration of transcranial stimulation would affect the activity of deeper structures like amygdala and hippocampus as the main components of the fear memory circuit in acquisition, storage, and expression of the memory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call