Abstract

Abstract A vertical centrifugal pump with a vaned diffuser is very attractive in the field of long-distance water supply. Excessive pressure fluctuations in the vaneless region due to rotor–stator interaction (RSI) need careful evaluation. In the present investigation, the hydraulic performance and pressure fluctuation characteristics of a vertical centrifugal pump with three different lean modes of the blade trailing edge were quantitatively analyzed by comparison experiments, using the same test rig. Results showed that the pressure fluctuation level was the highest in the vaneless region, closest to the volute tongue, and increased as the flow rate deviated from the design flow rate. The lean mode of the blade trailing edge was found to have a slight influence on hydraulic performance, and the relative deviation of experimental specific speeds with three different lean modes was within 6%. The influence of the lean mode of the blade trailing edge on the pressure fluctuation level was experimentally verified for the first time. In particular, the flow rate-averaged peak-to-peak value of pressure fluctuation with the positive lean mode (PLM) was 62% of the corresponding value with the zero lean mode (ZLM), while no significant improvement was observed for the negative lean mode (NLM). The flow mechanism behind this may be explained as a weakening of the jet-wake flow pattern with PLM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call