Abstract

Lead acetate (300 mg/L) and/or cadmium chloride (50 mg/L) were administered as drinking water to Sprague-Dawley rats for 9 weeks to investigate the effects of concurrent exposure to lead and cadmium on the distribution patterns of five essential trace elements. Inductively coupled plasma mass spectrometry was used to determine the concentrations of zinc, copper, manganese, selenium and iron in the urine at different exposure times, as well as their levels in the renal cortex and serum at the end of treatment. Compared with the control group, exposure to lead and/or cadmium resulted in a significant increase in the urinary excretion of these five elements during the experiment, whereas significant decreased levels of these elements were found in kidney and serum. In conclusion, increased urinary loss of antioxidant trace elements due to lead and/or cadmium exposure induced the deficiency of antioxidants in the body, which could result in further oxidative damage. Moreover, there was an obvious synergistic effect of lead combined with cadmium on the distribution patterns of these essential trace elements, which may be related to the severity of co-exposure to these two metals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call