Abstract

Background: As by-products of copper smelting, lead and cadmium pollute both workplace air at metallurgical plants and adjacent territories. Their increased levels in the human body pose a higher risk of cardiovascular diseases. The objective of our study was evaluate changes in the rat myocardium contractile function following moderate subchronic exposure to soluble lead and/or cadmium salts and its attenuation by means of a complex of bioprotectors. Materials and methods: The subchronic exposure of rats was modelled by intraperitoneal injections of 3-H2O lead acetate and/or 2.5-H2O cadmium chloride in single doses, 6.01 mg of Pb and 0.377 mg of Cd per kg of body weight, respectively, 3 times a week during 6 weeks. The myosin heavy chains isoform ratio was estimated by gel electrophoresis. Biomechanical measurements were performed on isolated multicellular preparations of the myocardium (trabeculae and papillary muscles) from the right ventricle. Results: The subchronic lead exposure slowed down the contraction and relaxation cycle and increased myosin expression towards slowly cycling V3 isomyosins. Cadmium intoxication, on the contrary, shortened the contraction and relaxation cycle and shifted the ratio of isomyosin forms towards rapidly cycling V1. Following the combined exposure to lead and cadmium, some contractile characteristics changed in the direction typical of the effect of lead while others – in that of cadmium. We observed that the metal combination either neutralized or enhanced the isolated damaging effect of each heavy metal. The use of a complex of bioprotectors normalized the myocardial contractility impaired by the exposure to lead and cadmium either partially or completely. Discussion: Despite the changes in myocardial contractility following the subchronic lead and cadmium exposure, the mechanisms of heterometric regulation were maintained. The adverse cardiotoxic effect of the combination of these industrial contaminants may be weakened by administering a complex of bioprotectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.