Abstract

In this paper, we report on high-k composite oxides that are formed by depositing multiple layers of HfO2 and La2O3 on In0.53Ga0.47As for MOS device application. Both multilayer HfO2 (0.8 nm)/La2O3 (0.8 nm)/In0.53Ga0.47As and La2O3 (0.8 nm)/HfO2 (0.8 nm)/In0.53Ga0.47As MOS structures were investigated. The effects of oxide thickness and postdeposition annealing (PDA) temperature on the interface properties of the composite oxide MOS capacitors were studied. It was found that a low CET of 1.41 nm at 1 kHz was achieved using three-layer composite oxides. On the other hand, a small frequency dispersion of 2.8% and an excellent Dit of 7.0 × 1011 cm−2·eV−1 can be achieved using multiple layers of La2O3 (0.8 nm) and HfO2 (0.8 nm) on the In0.53Ga0.47As MOS capacitor with optimum thermal treatment and layer thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.