Abstract
Spence, Porchè L., Deanna L. Osmond, Wesley Childres, Joshua L. Heitman, and Wayne P. Robarge, 2012. Effects of Lawn Maintenance on Nutrient Losses Via Overland Flow During Natural Rainfall Events. Journal of the American Water Resources Association (JAWRA) 48(5): 909‐924. DOI: 10.1111/j.1752‐1688.2012.00658.xAbstract: A sampling system was used to evaluate the effect of residential lawn management on nutrient losses via overland flow generated during natural rainfall events from three residential landscapes: a high maintenance fescue lawn (HMFL), a low maintenance fescue lawn (LMFL), and a mixed forested residential landscape (FRL). A sampling system was located in designated areas within each landscape such that 100% of the runoff follows natural flow paths to the outlet ports and collects in sterile Nalgene® B3 media bags (Thermo Fisher Scientific, Rochester, NY). A rainfall event was defined as producing ≥2.54 mm of water. A total of 87 rainfall events occurred during a 20‐month monitoring period. The total runoff volume collected from the LMFL was higher than from the HMFL and FRL, but on average <1% of the total rainfall was collected from the three landscapes. Mean nitrate concentrations from each lawn did not exceed 0.6 mg N/l. Nutrient unit area losses from the HMFL, LMFL, and FRL were 1,000 times less than fertilizer and throughfall inputs, which were due to the presence of well‐structured soils (low bulk densities) with high infiltration rates. This study demonstrated that the frequency of runoff, total runoff volumes, and nutrient losses during natural rainfall events are lower from highly maintained (i.e., irrigation, fertilizer application, and reseeding) densely uniform manicured lawns than low maintenance lawns and forested residential landscapes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JAWRA Journal of the American Water Resources Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.