Abstract
In this paper, the effects of lattice stiffeners and blast load on nonlinear dynamic response and vibration of auxetic sandwich honeycomb plates on Pasternak elastic foundations are considered. The remarkable point of this study is that the outer surfaces of the system reinforced by lattice stiffeners (including orthogonal stiffeners and oblique stiffeners) are made of functionally graded materials. Based on the analytical solution, the Reddy’s FSDT, the Airy’s stress functions, the Galerkin and the fourth-order Runge-Kutta methods, fundamental frequency, dynamic response and frequency–amplitude curves of the plates reinforced by lattice stiffeners under blast and mechanical loads are determined. Then, the result analyses the effect of lattice stiffeners, blast and mechanical loads, elastic foundations on nonlinear dynamic response and vibration of auxetic honeycomb plates. The optimal angle of oblique stiffeners which maximizes natural frequency and contemporaneously minimizes amplitude when changing geometrical parameters of auxetic honeycomb is also determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.