Abstract

The majority of lambs in the United States are born from late winter to early spring and pregnant ewes are generally sheared in the last third of pregnancy. Although there are benefits to shearing before parturition, shorn animals may be more vulnerable to the cold, highly variable climatic conditions associated with these seasons. The objective of this study was to determine if late gestation shearing induces differences in individual BW, dry matter intake (DMI) and plasma metabolite concentration of finewool ewes managed outdoors during winter. Thirty-six mature, pregnant Rambouillet ewes (3.8±0.45 years; 76.8±11.4 kg) were managed in a drylot with ad libitum access to pelleted alfalfa in bunks capable of measuring individual daily DMI. The treatment group consisted of ewes sheared at ~5 weeks before the estimated parturition date (shorn; n=18). Unshorn ewes (n=18) remained in full fleece throughout the experiment and were shorn on the last day of the experiment ~2 weeks before the estimated parturition date. Blood was collected on days 0 (before shearing shorn group), 7, 14 and 21 (before shearing unshorn group) of the trial, and plasma was isolated and analyzed for non-esterified fatty acid (NEFA), β-hydroxybutyrate (BHB) and glucose (GLU) concentrations. There was no effect of shearing on ewe DMI or BW during the trial (P⩾0.35). Plasma NEFA and GLU concentrations were similar (P⩾0.36) between shearing groups, though plasma BHB concentration was 103.7 μmol/l greater (24.1%; P<0.01) in unshorn ewes. Lamb BW at birth was not affected (P=0.30) by ewe shearing treatment. Under conditions of this study, no differences in economically important aspects of sheep production were observed between shorn and unshorn pregnant ewes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.