Abstract
Marine invertebrates inhabiting the high Antarctic continental shelves are challenged by disturbance of the seafloor by grounded ice, low but stable water temperatures and variable food availability in response to seasonal sea-ice cover. Though a high diversity of life has successfully adapted to such conditions, it is generally agreed that during the Last Glacial Maximum (LGM) the large-scale cover of the Southern Ocean by multi-annual sea ice and the advance of the continental ice sheets across the shelf faced life with conditions, exceeding those seen today by an order of magnitude. Conditions prevailing at the LGM may have therefore acted as a bottleneck event to both the ecology as well as genetic diversity of today's fauna. Here, we use for the first time specific Species Distribution Models (SDMs) for marine arthropods of the Southern Ocean to assess effects of habitat contraction during the LGM on the three most common benthic caridean shrimp species that exhibit a strong depth zonation on the Antarctic continental shelf. While the shallow-water species Chorismus antarcticus and Notocrangon antarcticus were limited to a drastically reduced habitat during the LGM, the deep-water shrimp Nematocarcinus lanceopes found refuge in the Southern Ocean deep sea. The modeling results are in accordance with genetic diversity patterns available for C. antarcticus and N. lanceopes and support the hypothesis that habitat contraction at the LGM resulted in a loss of genetic diversity in shallow water benthos.
Highlights
With at least 350 different genera and more than 2,800 described species, caridean shrimps (Crustacea: Decapoda) represent a group of primarily marine crustaceans with a high degree of diversity in body form and occupied habitats [1]
Only about a dozen caridean shrimp species are known from the Southern Ocean [4,5,6,7], with only three shrimp species left on the high-Antarctic continental shelves, where temperatures are below zero all year round
In order to understand the fragmented information of biogeography and spatial distribution of these three shrimp species, we developed Species Distribution Models (SDMs) based on a most comprehensive set of species records and current environmental conditions
Summary
With at least 350 different genera and more than 2,800 described species, caridean shrimps (Crustacea: Decapoda) represent a group of primarily marine crustaceans with a high degree of diversity in body form and occupied habitats [1]. Chorismus antarcticus may occasionally be found in the Magellan region, but Notocrangon antarcticus has been recorded north of the Antarctic convergence only once [13] While both of these species represent typical and abundant Antarctic shelf or slope species, the deep-sea shrimp Nematocarcinus lanceopes Bate, 1888 [14] is known from the deep sea around Antarctica to approximately 4,000 m water depth, sub-Antarctic islands as well as other adjacent deep-sea basins off Chile and South Africa [5,14,15,16,17,18,19,20]. Populations of the deep-water shrimp Nematocarcinus lanceopes were less affected in their genetic diversity, supporting a scenario that recent and recurrent glaciations of the continental shelf are very likely to have affected benthic shallow-water shelf species generally far more than pelagic species or primarily deepsea distributed species [40]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.