Abstract

The demand inherent to the aeronautical industry in terms of productivity and quality requirements leads to develop new cutting tools. Hence, PCD tools meet the requirements in productivity while machining low machinability aeronautical alloys such as Ti6Al4V. Tool chipbreakers play a considerable role in terms of tool life. However, due to the extreme conditions (temperature and pressure) required to manufacture PCD tools, any complex geometry on tool rake faces is not viable, so chipbreakers are not possible, except for those external to inserts. This work proposes a groove-type laser engraved chipbreaker design and a manufacturing methodology, with experimental validation on turning a Ti6Al4V workpiece. The so-manufactured chipbreakers achieve titanium alloy chip fragmentation, making easy chip removal from the cutting zone. A set of experiments involving various laser parameters to characterize the PCD depth and surface integrity and experimental validation for those chipbreakers designs were carried out in finishing cutting conditions. The optimum parameters for the engraving of PCD were found, obtaining satisfactory breakage of titanium chips. Chip length was always below 17.29 mm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.