Abstract
Poly(dodecano-12-lactam) (commercially known as polyamide “PA12”) is one of the most resourceful materials used in the selective laser sintering (SLS) process due to its chemical and physical properties. The present work examined the influence of two SLS parameters, namely, laser power and hatch orientation, on the tensile, structural, thermal, and morphological properties of the fabricated PA12 parts. The main objective was to evaluate the suitable laser power and hatching orientation with respect to obtaining better final properties. PA12 powders and SLS-printed parts were assessed through their particle size distributions, X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), a scanning electron microscope (SEM), and their tensile properties. The results showed that the significant impact of the laser power while hatching is almost unnoticeable when using a high laser power. A more significant condition of the mechanical properties is the uniformity of the powder bed temperature. Optimum factor levels were achieved at 95% laser power and parallel/perpendicular hatching. Parts produced with the optimized SLS parameters were then subjected to an annealing treatment to induce a relaxation of the residual stress and to enhance the crystallinity. The results showed that annealing the SLS parts at 170 °C for 6 h significantly improved the thermal, structural, and tensile properties of 3D-printed PA12 parts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.